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Implementing the Continued Fraction Factoring 
Algorithm on Parallel Machines 

By Marvin C. Wunderlich* 

Abstract. An implementation is described of the continued fraction factoring algorithm on the 
DAP parallel processor located in Queen Mary College in London. The DAP has 4096 
parallel processors each containing 16K bits of memory and the suggested implementation 
incorporates the early abort strategy and the large prime variation. 

Introduction. There are several good general factoring methods (i.e., methods 
which do not require factors of a certain form) for finding the factors of large 
composite numbers. The one which has been implemented and analyzed the most is 
the continued fraction algorithm of M. Morrison and J. Brillhart [4] which in 1970 
factored F7 = 2128 + 1 on the IBM 360/91 at U.C.L.A. An important variation on 
the continued fraction method (henceforth called CFRAC) is the early abort strategy 
(EAS) which has been mentioned by several factorizers including Brillhart but was 
finally analyzed and implemented by Pomerance and Wagstaff [7]. An essentially 
new method called the quadratic sieve (QS) was popularized by Pomerance and 
implemented by J. L. Gerver [1] at Rutgers University. QS should be superior to 
CFRAC even with EAS for numbers in excess of 60 decimal digits and appears to be 
ideally suited to fast pipe line machines like the CRAY I. All of these algorithms 
along with several other important variations have been analyzed from an asymp- 
totic point of view by C. Pomerance [6]. 

It is the author's belief that CFRAC with or without EAS is ideally suited for 
implementation on highly parallel array processors such as the ICL DAP in London 
or the Goodyear MPP, which has been installed this year at Goddard Space Flight 
Center. This paper describes a suggested implementation of CFRAC on such a 
machine and presents a running time analysis which optimizes the input parameters 
for numbers which are in the 60 decimal digit range. Array processors are not readily 
available at this time. The ICL DAP is located in London and is only available to 
the author through an international telecommunications link such as TELENET. 
The MPP has been recently installed at NASA and is not easily available. Thus the 
implementation described herein has not been completely written and the assump- 
tions used in the analysis have yet to be tested on large numbers. 
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I. Description of the Algorithm. All the methods discussed in the introduction are 
based on the observation that if two squares X2, Y2, can be found such that 

Y2 (mod M) and X ? Y (mod M), then M can be factored by computing 
GCD(X - Y, M), since M x = (X-Y)(X+ Y). All the methods find 
the two squares by generating and factoring a large collection of quadratic residues, 
mod M. They differ only in the method of computing the quadratic residues and the 
procedures used in factoring them. Good descriptions of CFRAC can be found in 
Morrison and Brillhart [4] and in Knuth [2]. We will repeat the salient portions of 
the algorithm for this discussion. 

Step 1. If M is the number to be factored, compute all the primes p < x for which 
(M/p) = 1. x is an input parameter whose value will be discussed later and (M/p) 
is the usual Jacobi symbol. Assume there are F such primes and refer to them as the 
factor base and denote the set by FB. 

Step 2. Compute a set of integers Q = (Q1l Q2'... IQNQ) and A = 

(A1 A2,... ,A NQ) having the properties 

(1) ~~~~~~(-1)'Qi= A 2 mod M 

(2) Qi < 2JA7. 

The Q's and A's are generated by making use of the continued fraction expansion 
of JAY. (See Remark 2.) The parameter NQ depends on the size of M and is 
discussed later. 

Step 3. Attempt to factor each Qi in Q by dividing it by each p in the factor blase. 
Either Qi will factor completely over FB so that 

or Qj will factor having one large prime p in the factorization with p < (PF) 

Therefore, 

Qi=Plp#i2 ..*. pflF . p. 

Step 4. Construct a 0, 1 matrix T = {m jin) having F columns and R rows using 
the factorizations obtained in Step 3. T will have one column for each prime in the 
factor base. R, the number of rows, can be partitioned as R = t1 + t2, where t1 is the 
number of Q's which factor as in (4) for which their largest prime p are equal. If a 
largest p occurs n times, it counts as n - 1 pairs. In the first case, the matrix row 
consists of the 0, 1 vector (a,, a2, .. ., as), where ai ai (mod 2) in (3). In the second 
case, suppose the pair is Qj as in (4) and 

Q, = pY1lpY2 ... pFFp. 

We- dmTlUt 1dw irbliWxL AWbb-feetzeih 2 e .2..... -; 'e +- 1 - Si. 
This is the-O; 1 vector- corresponding to- the quadratic-residueQi . Qj-- 

If R = F + D, then applying Gaussian elimination to T will produce at least D 
zero rows and each represents a collection of Q's whose product contains only even 
powers in its unique factorization and is a square. If X2 is one of these squares, and 
y2 iS the product of the A2 in (1) corresponding to these Qi's, then X2_ y2 0 
(mod M) and GCD(X - Y, M) will likely be a proper factor of M. If none of the 
squares succeed in factoring M, one goes back to Step 2 to compute and factor some 
more values of Q. 
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Remarks. 1. The computation of the Jacobi symbols in Step 1 consumes little time 
in the algorithm and could be computed sequentially on a standard computer 
without severely impacting on the total execution time. However, the implementa- 
tion described herein uses a parallel algorithm to compute 4096 Jacobi symbols 
simultaneously. This is described in [7]. 

2. The Q's are generated recursively using the formulas 

Qn Qn-2 + qn-l(r1 r- 
Gn= 2g -rn-, 

qn= IGnlQn I 

rn= Gn -qnqn ' 

An-qnAn-1 + An-2 mod N, 

where the initial values are 

G = [Vr], Q-1 = N, Qo =1 qo = g, ro = 0, A1= 1, Ao= g. 

Although parallel methods are known for generating values of Q and even possibly 
the A's, in all current implementations of this algorithm, these are computed 
sequentially. 

3. Step 4 requires that the factorization satisfying (4) be sorted on the largest 
prime factor p so that those with equal p can be identified. Steps 2 and 3 must be 
executed until it is reasonably certain that enough factored Q are generated so that 
Step 4 will produce a few dependent rows. This is generally accomplished by 
computing the ratio LEVEL = (F + LP)/NF where F is the number of primes in 
the factor base, LP is the number of Q which factored with a large prime as in (4) 
and NF is the total number of factored Q. Experience has shown that when LEVEL 
reaches the value .96 for numbers around 40-50 digits in length, there are a suitable 
number of dependent rows in Step 4 to obtain a factorization. For larger numbers 
(60-70 digits) it appears that a value of LEVEL = .98 is more suitable. More will be 
said later in this paper about this strategy. 

4. An algorithm which performs Gaussian elimination on a 0, 1 matrix in GF(2) 
using minimal storage is discussed in a separate paper by Parkinson and Wunderlich 
[5]. This step uses little computer time compared to the factoring in Step 3 and is not 
included in the subsequent analysis. 

II. An Analysis. We will first examine a simplified version of CFRAC in which the 
large prime variation is not employed. This version only accepts complete factoriza- 
tions of the Q over the factor base as in (3). We must determine the optimum value 
of x = PF the largest prime in the factor base, to minimize the running time. We will 
assume that sufficient Q must be factored so that NF, the number of factored Q, will 
equal F, the number of elements in the factor base. To do this, we must attempt to 
factor 

(5) NQ = F/r 

values of Q, where r is the fraction of Q's which factor over the factor base and this 
will require ND division operations where 

(6) ND=F2/r. 
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FIGURE 1 

The ratio r can be approximated by Dickman's function r(a) which is the limiting 
fraction of integers n for which all prime factors of n are less than n'. To this end, 
we let a = (log x)/log VM and using the prime number theorem and the fact that 
roughly half the prime numbers p have the property that the Legendre symbol 
(M/p) = 1, we obtain 

Ma/2 

a log M 

which gives a running time estimate 

(7) ND = M 
r(a) a2 log 2 m' 

Dickman's function r(a) has been tabulated by D. E. Knuth and L. Trabb Pardo 
[3, p. 340]. Interpolating geometrically in these tables, we can choose the optimum 
value of a, and hence of F, which minimizes ND. 

The effect of using the large prime variation can be analyzed in a similar fashion. 
If we let L be the value LEVEL = .98 discussed in Remark 3, let r be defined as in 
(6) and let g be the fraction of Q's which factor admitting a large prime, then a little 
calculation shows that the large prime variation affects the estimate of ND given in 
(6) by the factor 

(8) LPC = L 
g 1l- L(1 -(r/g)) 

which reduces to unity when L = 1. This value can be computed using the tabulated 
values of g = G (a) given in Knuth and Trabb Pardo; for N = 1060, L = .98 and for 
values of a in the "useful range" around .15, the value of LPF is about .413. For this 
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TABLE 1 

F aO .4NND r ( a) 

20,202 0.1800 0.284167E+09 0.229628E+13 0.000071091 
10,720 0.1700 0.388178E+09 0.166458E+13 0.000027617 

5,709 0.1600 0.632527E+09 0.144438E+13 0.00C009025 
5,361 0.1590 0.671318E+09 0.143964E+13 0.000007986 
5,035 0.1580 0.713623E+O9 0.143726E+13 0.000007056 
5,004 0.1579 0.718061E+09 0.143?15E+13 0.000006968 
4,972 0.1578 0.722538E+09 0.143707E+13 0.000006882 
4,941 0.1577 0.727054E+09 0.143700E+13 0.000006796 
4,910 0.1576 0.731612E+09 0.143697E+13 0.000006712 
4,880 0.1575 0.736209E+09 0.143695E+13 0.000006628 
4,849 0.1574 0.740849E+09 0.143697E+13 0.000006545 
4,819 0.1573 0.745528E+09 0.143700E+13 0.000006464 
4,789 0.1572 0.750250E+09 0.143706E+13 0.000006383 
4,759 0.1571 0.755015E+09 0.143715E+13 0.000006303 
4,729 0.1570 0.759821E+09 0.1437216E+13 0.000006224 
4,442 0.1560 0.810345E+09 0.143969E+13 0.000005481 
4,172 0.1550 0.865683E+09 0.144461E+13 0.000004819 
3,052 0.1500 0.123668E+10 0.150970E+13 0.000002468 
1,639 0.1400 0.300163E+10 0.196767E+13 0.000000546 

885 0.1300 0.992030E+10 0.350998E+13 0.000000089 

reason, and in view of the shaky evidence for determining the correct value of 
L = .98, we will simply introduce the factor .4 in all of our tabulation of ND in 
order to allow for the use of the large prime variation. It is clear that as our ability 
emerges to factor numbers significantly larger than 60 digits, the usefulness of this 
variation will certainly diminish. This is consistent with Pomerance's asymptotic 
analysis of the variation given in [6]. For a more thorough analysis of this variation, 
see [9]. 

Figure 1 and Table 1 demonstrate the result of this optimization. For various 
values of a shown in column 2 of the table, the values of F, NQ, NDx.4 and the 
interpolated value r(a) obtained from Knuth's tables are tabulated. It shows that 
CFRAC should optimally perform on a 60-digit factorization if about 4880 primes 
are used in the factor base and 7.36 X 108 values of Q are computed. About 
1.44 x 1012 division instructions will be required which, at a rate of one micro-sec- 
ond per division on a sequential machine, would take about 400 hours of computing. 

III. The Implementation. The DAP array processor consists of 4096 individual 
processors each having a memory consisting of 16,384 bits. Data can be organized in 
almost any way in the processor memories since the lowest level assembly language 
treats each single bit as a separate addressable storage location. Instruction acts on 
all processors simultaneously, although any subset of the processors can be masked 
out so that data is not affected in the masked processors. We will describe a 
suggested implementation for Step 3 of the algorithm: the factoring of the Q,'s. One 
can either put 4096 different Q's in the processors and divide them individually by 
the p's in the factor base, or one can put one prime in each processor and, with a 
single instruction, divide a single Q by all the primes in the factor base. This 
implementation uses a combination of the two methods. We will use the latter 
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method in Stage 1 of the algorithm in order to identify, for each Q, the p's which 
divide Q. Then in Stage 2, we use the first-mentioned method to actually factor the 
Q's. 

Set up. Put a different prime p from the factor base in each processor so that in 

the algorithm below, P will always refer to a collection of up to 4096 primes, one in 

each processor memory. 
Stage 1. In one processor, compute the next (Q, A) pair using the equations in 

Remark 2. In each processor, compute REM = (Q/P) * P where truncated integer 
division is meant by the / sign. In each processor for which REM = 0, store P on a 

stack contained in the processor containing the current Q and A. Repeat Stage 1 
using another processor for the (Q, A) pair until all processors are used. 

Remark. Each processor memory now contains a value of Q, A and a set of primes 
from the factor base which divide that particular value of Q. The average number of 

P in each stack is about log log Q or 4.24 for a 60-digit factorization. The maximum 
number for 4096 Q's should not exceed ten. 

Stage 2. In all processors, beginning with I = 1, divide Q by the Ith element of 

the prime stack giving QUOT and REM so that 

Q = P(I) * QUOT + REM. 

Where REM = 0, replace Q by REM and repeat until all REM + 0. Replace I by 
I + 1 and repeat the stage for those processors whose prime stack contains an Ith 

prime. 
Test. Store on a file those Q's which have factored. If not enough Q's have been 

interrogated, go back to Stage 1. 
Note that a great deal of inefficiency is introduced in Stage 2, since for most 

divisions of higher powers, most processors will have been masked out. But this 

entire stage processes at most 10 primes and uses up a small amount of processor 
time compared to Stage 1 which represents the bottleneck in this implementation. 
Since the fundamental operation in Stage 1 is to find a remainder rather than 

determine a quotient and remainder, we can save processor time by programming 
the "division" in Stage 1 by using repeated additions. For example, if N is a 60-digit 
number and each Q contains about 100 bits, then in the Setup portion of the 

algorithm, compute in each processor memory, the numbers T(1), T(2),... , T(100) 
where T(i) 2Y mod P for the prime P assigned to that processor. Now, let 

B(1), B(2), . . ., B(100) represent the contents of bit 1, bit 2, .. , bit 100 of the current 
value of Q in Stage 1. Then 

100 

REM= S T(i)modP, 
i=l1 

B(i)==1 

and finding a remainder mod P in each processor amounts to k additions, where k is 

the number of binary locations in Q containing 1; generally about 100/2. Such a 

programming trick is easy to implement on an array processor which has general bit 

manipulation instructions. This procedure for finding a remainder is about 32 times 

faster than ordinary division. 
Most of the individual parts of this implementation have been written on the DAP 

but, at the time of this writing, the total program has not been written. It is expected 
that a 60-digit factorization should take about 5 hours of DAP time. 
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IV. The Early Abort Strategy. The Early Abort Strategy (EAS) consists of giving 
up on the trial division of a particular Qn if division by the early primes in the factor 
base produces relatively few prime factors of Q,. This strategy has been analyzed by 
Pomerance [6] and an implementation on a sequential computer has been described 
by Pomerance and Wagstaff [7]. The results of their investigations show that this 
variation can effect an 8- to 10-fold acceleration of CFRAC. We will describe their 
method and show how it could be incorporated in the DAP implementation. 

To implement EAS with three aborts, we would choose three integers mln, m 2, and 
m 3 which satisfy 

0 < ml < m2 < mi3 < F 

and three bounds Bi satisfying 

2r& > B1 > B2> B3 > 1. 

If, after dividing out of Qi all primes p in the factor base satisfying 0 < p < mi , the 
cofactor CFi satisfies 

CFi > Bi, 

then we abandon the Qi, compute, and begin processing the next value Qi,,. There 
are three tests or "cuts" where such an abort is contemplated and each test reduces 
substantially the number of Q's which are interrogated. This is an idea well suited to 
a sequential processor where the values of Q are investigated one at a time and it 
does not seem immediately adaptable to our Stage 1, in which a single Q is divided 
by all F primes at once. We will describe an EAS scheme which will perform 
efficiently on a parallel processor as long as the integers ml, m2 -ml, andi3 - m2 

are divisors of the number of processors. For a 60-digit factorization on the DAP 
which has 4096 processors, will select the cut points 

ml = 16, m2= 80, m3 = 592. 

We can use the table in [7, p. 108] to determine the best values for the B's and for 
this implementation we would use 

B1 = 4 x 1027, B2= 7 x 1024, B3 = 1021. 

Stage 1 would now be expanded into three nested stages in the following way. 
Pass 1. Attempt to Factor the Q's With 16 Primes. 
Stage 1.1. We partition the 4096 processors into 256 partitions consisting of 16 

processors each. We regard these as separate parallel processors each consisting of 
16 processors and Stage 1 is implemented with multiplicity 256 in that 256 values of 
Q are computed, one in each partition, and the first 16 primes in the factor base are 
placed in each partition. With one parallel instruction, the value REM = (Q/P) * P 
is computed in each processor of each partition. Within each partition, the primes 
corresponding to REM = 0 are placed in a stack in the processor containing the 
particular Q belonging to the partition. The processor location of this value of Q is 
incremented by one with each execution of this stage until, after 16 executions, 4096 
values of Q have been tested, and each is associated with its stack of primes dividing 
Q. 

Stage 1.2. This executes exactly as Stage 2 of the previously described method. 
The elements of the stack are used as trial divisors in order to divide out all possible 
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powers of the primes which divide the Q. Then we save those values of Q for which 
Q < B1 which will be used as input into the next pass. If there is sufficient memory, 

the values of Q which pass the test could be "parked" in a higher portion of memory 
to be recalled when a sufficient number of "good" Q's have been collected to 
execute a stage of the next pass. 

Pass 2. Divide by the Next 64 Primes. 
Stage 2.1. We now partition the 4096 processors into 64 partitions of 64 processors 

each and proceed exactly as in Stage 1.1. This is a natural mode of operation for the 
DAP since high-level software exists for the machine when it is regarded as a 64 
processor parallel computer operating with a word length of 64 bits. At the 
conclusion of 64 executions of this stage, 4096 Q's are determined with their stack of 
primes carried in from Pass 1 with an additional stack of primes which were added 
in Stage 2.1. 

Stage 2.2. The new primes are divided out of the Q's in parallel and the resulting 
Q's which satisfy Q < B2 are again saved on a file or "parked" in an even higher 
portion of memory. 

Pass 3. Divide by the Next 512 Primes. Here the 4096 processors are partitioned 
into 8 partitions consisting of 512 processors each, and the 4096 good-good Q's 
which have survived Passes 1 and 2 and are parked in memory or stored on a file 
and are retrieved eight at a time and processed exactly like Pass 2. The survivors of 
this pass, those for which Q < B3, are parked or stored to be used as input for the 
final pass. 

Pass 4. The Final Set of Primes. We now finish off those values of Q which have 
survived all the earlier cuts with one instruction in parallel which divides the Q's one 
at a time by up to 4096 primes, one in each processor. The algorithm concludes 
exactly like the original algorithm without EAS. The primes are parked one by one 
into a region of high core along with the stack of primes which divide them. Stage 
4.2 divides all the prime factors and those Q which factor completely are saved for 
the Gaussian elimination step. If the Large Prime variation is employed, the Q's 
whose cofactor is less than the square of PF are saved on some external storage 
device until enough are accumulated so that the scan program will generate a row of 
zeros in the Gaussian elimination step. 

Pomerance and Wagstaff claim that EAS with three aborts should increase the 
running speed of the program by a factor of 10 and this would produce an algorithm 
which would factor a 60-digit number in about a half hour. However, for three of the 
four "Stage 1" executions, it will not be possible to obtain full advantage of the 
remaindering operation described in Section III in which the sum (9) is taken over 
all i whose i th bit of Q contains 1. Since the computer contains many Q's, the sum 
will have to be computed for each i and utilized in those processors whose Q has its 
ith bit 1. This will probably reduce our gain from using this table remaindering from 
3 to 2, giving us a 60-digit average running time of about an hour. This section 
concludes with a set of remarks pertaining to a suggested DAP implementation of 
this algorithm. 

1. The majority of this algorithm can be written in the higher-level language DAP 
FORTRAN. For an elementary discussion of DAP FORTRAN and an example of 
its application to a problem in number theory, see [8]. The most difficult part of the 
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algorithm will be the collection in a stack of the primes which divided the Q in its 
particular processor partition. (See Stage 1.1.) This essentially consists of identifying 
all elements of a portion of a bit plane containing a one and recording the cardinal 
number of its processor. This would involve programming at the microcode level. 
Routines do exist when the partition size is 64 as in Pass 2 or 4096 as in Pass 4. 

2. The optimum size of the factor base will really depend on hardware constraints 
rather than theoretical considerations. Even though the choices for ml given would 
permit a factor base size of 4688 if 4096 primes were used in the last pass, a total 
factor base size of 4096 is really preferable on the DAP. This is because a bit matrix 
of 4096 X 4096 will conveniently fit in the memory of the DAP and the elimination 
can be carried out in core without any disk swapping. Parkinson and Wunderlich [5] 
have shown how this can be done without the need for allocating additional memory 
for a history matrix. If one really has an unbounded number of processors, then one 
could compute the optimum number of processors and hence the number of primes 
in the factor base by minimizing the value of NQ = F/r given in (5). One then has 
to take into consideration the time taken to perform the elimination step and this 
makes the result hardware dependent. A preliminary computation shows the opti- 
mum number of processors to be around 50,000 and there is little hope that a 
computer will be built soon which has sufficient memory per processor to implement 
this kind of program. 

3. For a 60-digit factorization, there seems to be enough memory in the DAP 
located at Queen Mary College, London, to implement the entire four pass algo- 
rithm without ever resorting to any external store. Pass 1 would be repeated until 
4096 Q's are generated which survive Test 1. Then one iteration of Pass 2 would 
park a small number of Q which survived two tests. This would continue until 4096 
of these Q's are parked, which would trigger one execution of Pass 3. Pass 3 is 
repeated until 4096 Q's are generated having survived all three tests, and then the 
final factorization identifies the small fraction of Q's which factor completely over 
the factor base or factor with a large prime. Only in the latter case will external store 
be needed to store the large prime factorizations. If the large prime variation is not 
used, the entire algorithm could be processed in one contiguous run. 

4. The computation of the (Q, A) pairs is basically a serial operation although 
methods are known for generating the values of Q in parallel. Since the host 
computer for the DAP is an ICL 2980, and the DAP is always called from an 
executing 2980 program as a subroutine, the (Q, A) pairs could be generated in a 
2980 program and stored in memory which is shared between the DAP and the 
2980. The parallel factoring program in the DAP could be called as a subroutine 
from the 2980 whenever a new buffer of (Q, A) pairs have been generated. The 2980 
operates in a time sharing mode whereas only one DAP program is executed at a 
time. The program would blend well with the usual mix of user programs in the 
system and it would not be necessary to dedicate the entire system to such a 
program. 

5. There seems to be less advantage to using the Stage 1/Stage 2 variation when 
the number of primes is small as in Pass 1 than when the number of primes is large. 
Therefore, it may be sensible to use EAS without the two stage variation in Pass 1. 
Then we would merely put 4096 values of Q in the memory, one in each processor, 
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and proceed to divide all the Q 's with one p at a time until all p's are divided out of 
all Q 's. After doing this for 16p 's, we test Q < B, and proceed with Pass 2 using the 

two stage variation. We lose the factor of 2 because we cannot use the fast simple 
division method, but we may gain that back in a more efficient implementation of 
EAS. Only experience will tell. 

Conclusion. At the time of this writing, there are some factorization programs 
being tested which achieve the performance suggested in this article. The most recent 
was done at Sandia Laboratories by J. A. Davis and D. B. Holdridge, where the 
quadratic sieve algorithm was programmed on a CRAY I. Davis and Holdridge have 
recently announced a successful factorization of a 63-digit number in a total of 5.4 
hours of machine time. The author is designing an implementation of CFRAC on 
the MPP parallel processor which has four times as many processors and runs about 
twice as fast as the DAP, and such a program could conceivably factor a 60-digit 
number in a running time measured in minutes rather than hours. 

The author would like to thank Professor Dennis Parkinson of Queen Mary 
College, London, who contributed many important ideas for the DAP implementa- 
tion and the referee for several helpful suggestions in the preparation of the paper. 
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