
MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 169
JANUARY 1985, PAGES 251-260

Implementing the Continued Fraction Factoring
Algorithm on Parallel Machines

By Marvin C. Wunderlich*

Abstract. An implementation is described of the continued fraction factoring algorithm on the
DAP parallel processor located in Queen Mary College in London. The DAP has 4096
parallel processors each containing 16K bits of memory and the suggested implementation
incorporates the early abort strategy and the large prime variation.

Introduction. There are several good general factoring methods (i.e., methods
which do not require factors of a certain form) for finding the factors of large
composite numbers. The one which has been implemented and analyzed the most is
the continued fraction algorithm of M. Morrison and J. Brillhart [4] which in 1970
factored F7 = 2128 + 1 on the IBM 360/91 at U.C.L.A. An important variation on
the continued fraction method (henceforth called CFRAC) is the early abort strategy
(EAS) which has been mentioned by several factorizers including Brillhart but was
finally analyzed and implemented by Pomerance and Wagstaff [7]. An essentially
new method called the quadratic sieve (QS) was popularized by Pomerance and
implemented by J. L. Gerver [1] at Rutgers University. QS should be superior to
CFRAC even with EAS for numbers in excess of 60 decimal digits and appears to be
ideally suited to fast pipe line machines like the CRAY I. All of these algorithms
along with several other important variations have been analyzed from an asymp-
totic point of view by C. Pomerance [6].

It is the author's belief that CFRAC with or without EAS is ideally suited for
implementation on highly parallel array processors such as the ICL DAP in London
or the Goodyear MPP, which has been installed this year at Goddard Space Flight
Center. This paper describes a suggested implementation of CFRAC on such a
machine and presents a running time analysis which optimizes the input parameters
for numbers which are in the 60 decimal digit range. Array processors are not readily
available at this time. The ICL DAP is located in London and is only available to
the author through an international telecommunications link such as TELENET.
The MPP has been recently installed at NASA and is not easily available. Thus the
implementation described herein has not been completely written and the assump-
tions used in the analysis have yet to be tested on large numbers.

Received March 2, 1983; revised November 28, 1983 and May 16, 1984.
1980 Mathematics Subject Classification. Primary 1OA25.
*Research supported in part by grants from NSF and NSA.

'01985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

251

252 MARVIN C. WUNDERLICH

I. Description of the Algorithm. All the methods discussed in the introduction are
based on the observation that if two squares X2, Y2, can be found such that

Y2 (mod M) and X ? Y (mod M), then M can be factored by computing
GCD(X - Y, M), since M x = (X-Y)(X+ Y). All the methods find
the two squares by generating and factoring a large collection of quadratic residues,
mod M. They differ only in the method of computing the quadratic residues and the
procedures used in factoring them. Good descriptions of CFRAC can be found in
Morrison and Brillhart [4] and in Knuth [2]. We will repeat the salient portions of
the algorithm for this discussion.

Step 1. If M is the number to be factored, compute all the primes p < x for which
(M/p) = 1. x is an input parameter whose value will be discussed later and (M/p)
is the usual Jacobi symbol. Assume there are F such primes and refer to them as the
factor base and denote the set by FB.

Step 2. Compute a set of integers Q = (Q1l Q2'... IQNQ) and A =

(A1 A2,... ,A NQ) having the properties

(1) ~~~~~~(-1)'Qi= A 2 mod M

(2) Qi < 2JA7.

The Q's and A's are generated by making use of the continued fraction expansion
of JAY. (See Remark 2.) The parameter NQ depends on the size of M and is
discussed later.

Step 3. Attempt to factor each Qi in Q by dividing it by each p in the factor blase.
Either Qi will factor completely over FB so that

or Qj will factor having one large prime p in the factorization with p < (PF)

Therefore,

Qi=Plp#i2 ..*. pflF . p.

Step 4. Construct a 0, 1 matrix T = {m jin) having F columns and R rows using
the factorizations obtained in Step 3. T will have one column for each prime in the
factor base. R, the number of rows, can be partitioned as R = t1 + t2, where t1 is the
number of Q's which factor as in (4) for which their largest prime p are equal. If a
largest p occurs n times, it counts as n - 1 pairs. In the first case, the matrix row
consists of the 0, 1 vector (a,, a2, .. ., as), where ai ai (mod 2) in (3). In the second
case, suppose the pair is Qj as in (4) and

Q, = pY1lpY2 ... pFFp.

We- dmTlUt 1dw irbliWxL AWbb-feetzeih 2 e .2..... -; 'e +- 1 - Si.
This is the-O; 1 vector- corresponding to- the quadratic-residueQi . Qj--

If R = F + D, then applying Gaussian elimination to T will produce at least D
zero rows and each represents a collection of Q's whose product contains only even
powers in its unique factorization and is a square. If X2 is one of these squares, and
y2 iS the product of the A2 in (1) corresponding to these Qi's, then X2_ y2 0
(mod M) and GCD(X - Y, M) will likely be a proper factor of M. If none of the
squares succeed in factoring M, one goes back to Step 2 to compute and factor some
more values of Q.

IMPLEMENTING THE CONTINUED FRACTION FACTORING ALGORITHM 253

Remarks. 1. The computation of the Jacobi symbols in Step 1 consumes little time
in the algorithm and could be computed sequentially on a standard computer
without severely impacting on the total execution time. However, the implementa-
tion described herein uses a parallel algorithm to compute 4096 Jacobi symbols
simultaneously. This is described in [7].

2. The Q's are generated recursively using the formulas

Qn Qn-2 + qn-l(r1 r-
Gn= 2g -rn-,

qn= IGnlQn I

rn= Gn -qnqn '

An-qnAn-1 + An-2 mod N,

where the initial values are

G = [Vr], Q-1 = N, Qo =1 qo = g, ro = 0, A1= 1, Ao= g.

Although parallel methods are known for generating values of Q and even possibly
the A's, in all current implementations of this algorithm, these are computed
sequentially.

3. Step 4 requires that the factorization satisfying (4) be sorted on the largest
prime factor p so that those with equal p can be identified. Steps 2 and 3 must be
executed until it is reasonably certain that enough factored Q are generated so that
Step 4 will produce a few dependent rows. This is generally accomplished by
computing the ratio LEVEL = (F + LP)/NF where F is the number of primes in
the factor base, LP is the number of Q which factored with a large prime as in (4)
and NF is the total number of factored Q. Experience has shown that when LEVEL
reaches the value .96 for numbers around 40-50 digits in length, there are a suitable
number of dependent rows in Step 4 to obtain a factorization. For larger numbers
(60-70 digits) it appears that a value of LEVEL = .98 is more suitable. More will be
said later in this paper about this strategy.

4. An algorithm which performs Gaussian elimination on a 0, 1 matrix in GF(2)
using minimal storage is discussed in a separate paper by Parkinson and Wunderlich
[5]. This step uses little computer time compared to the factoring in Step 3 and is not
included in the subsequent analysis.

II. An Analysis. We will first examine a simplified version of CFRAC in which the
large prime variation is not employed. This version only accepts complete factoriza-
tions of the Q over the factor base as in (3). We must determine the optimum value
of x = PF the largest prime in the factor base, to minimize the running time. We will
assume that sufficient Q must be factored so that NF, the number of factored Q, will
equal F, the number of elements in the factor base. To do this, we must attempt to
factor

(5) NQ = F/r

values of Q, where r is the fraction of Q's which factor over the factor base and this
will require ND division operations where

(6) ND=F2/r.

254 MARVIN C. WUNDERLICH

..

. . 4'....:.,,.'.

- 00

OPTIMIZPTI ON CURVE FOR 11UtMBlER CIF Dit ICIflf'J
x

j,i-m;-12
's

60 DIGIT FACTORIi'ATION
.L^,l,1.''\\.

,,,,,,,,
'.,,,,,..', 0

0. .;
. . . .

. .

z; . . .' 2. .-

0

I500I
.

I 0i0C 0i 2000 3000 4I000 5000 60030 u0u 0 0 100 0 u0 10 0 00

Number of primes in factor base

FIGURE 1

The ratio r can be approximated by Dickman's function r(a) which is the limiting
fraction of integers n for which all prime factors of n are less than n'. To this end,
we let a = (log x)/log VM and using the prime number theorem and the fact that
roughly half the prime numbers p have the property that the Legendre symbol
(M/p) = 1, we obtain

Ma/2

a log M

which gives a running time estimate

(7) ND = M
r(a) a2 log 2 m'

Dickman's function r(a) has been tabulated by D. E. Knuth and L. Trabb Pardo
[3, p. 340]. Interpolating geometrically in these tables, we can choose the optimum
value of a, and hence of F, which minimizes ND.

The effect of using the large prime variation can be analyzed in a similar fashion.
If we let L be the value LEVEL = .98 discussed in Remark 3, let r be defined as in
(6) and let g be the fraction of Q's which factor admitting a large prime, then a little
calculation shows that the large prime variation affects the estimate of ND given in
(6) by the factor

(8) LPC = L
g 1l- L(1 -(r/g))

which reduces to unity when L = 1. This value can be computed using the tabulated
values of g = G (a) given in Knuth and Trabb Pardo; for N = 1060, L = .98 and for
values of a in the "useful range" around .15, the value of LPF is about .413. For this

IMPLEMENTING THE CONTINUED FRACTION FACTORING ALGORITHM 255

TABLE 1

F aO .4NND r (a)

20,202 0.1800 0.284167E+09 0.229628E+13 0.000071091
10,720 0.1700 0.388178E+09 0.166458E+13 0.000027617

5,709 0.1600 0.632527E+09 0.144438E+13 0.00C009025
5,361 0.1590 0.671318E+09 0.143964E+13 0.000007986
5,035 0.1580 0.713623E+O9 0.143726E+13 0.000007056
5,004 0.1579 0.718061E+09 0.143?15E+13 0.000006968
4,972 0.1578 0.722538E+09 0.143707E+13 0.000006882
4,941 0.1577 0.727054E+09 0.143700E+13 0.000006796
4,910 0.1576 0.731612E+09 0.143697E+13 0.000006712
4,880 0.1575 0.736209E+09 0.143695E+13 0.000006628
4,849 0.1574 0.740849E+09 0.143697E+13 0.000006545
4,819 0.1573 0.745528E+09 0.143700E+13 0.000006464
4,789 0.1572 0.750250E+09 0.143706E+13 0.000006383
4,759 0.1571 0.755015E+09 0.143715E+13 0.000006303
4,729 0.1570 0.759821E+09 0.1437216E+13 0.000006224
4,442 0.1560 0.810345E+09 0.143969E+13 0.000005481
4,172 0.1550 0.865683E+09 0.144461E+13 0.000004819
3,052 0.1500 0.123668E+10 0.150970E+13 0.000002468
1,639 0.1400 0.300163E+10 0.196767E+13 0.000000546

885 0.1300 0.992030E+10 0.350998E+13 0.000000089

reason, and in view of the shaky evidence for determining the correct value of
L = .98, we will simply introduce the factor .4 in all of our tabulation of ND in
order to allow for the use of the large prime variation. It is clear that as our ability
emerges to factor numbers significantly larger than 60 digits, the usefulness of this
variation will certainly diminish. This is consistent with Pomerance's asymptotic
analysis of the variation given in [6]. For a more thorough analysis of this variation,
see [9].

Figure 1 and Table 1 demonstrate the result of this optimization. For various
values of a shown in column 2 of the table, the values of F, NQ, NDx.4 and the
interpolated value r(a) obtained from Knuth's tables are tabulated. It shows that
CFRAC should optimally perform on a 60-digit factorization if about 4880 primes
are used in the factor base and 7.36 X 108 values of Q are computed. About
1.44 x 1012 division instructions will be required which, at a rate of one micro-sec-
ond per division on a sequential machine, would take about 400 hours of computing.

III. The Implementation. The DAP array processor consists of 4096 individual
processors each having a memory consisting of 16,384 bits. Data can be organized in
almost any way in the processor memories since the lowest level assembly language
treats each single bit as a separate addressable storage location. Instruction acts on
all processors simultaneously, although any subset of the processors can be masked
out so that data is not affected in the masked processors. We will describe a
suggested implementation for Step 3 of the algorithm: the factoring of the Q,'s. One
can either put 4096 different Q's in the processors and divide them individually by
the p's in the factor base, or one can put one prime in each processor and, with a
single instruction, divide a single Q by all the primes in the factor base. This
implementation uses a combination of the two methods. We will use the latter

256 MARVIN C. WUNDERLICH

method in Stage 1 of the algorithm in order to identify, for each Q, the p's which
divide Q. Then in Stage 2, we use the first-mentioned method to actually factor the
Q's.

Set up. Put a different prime p from the factor base in each processor so that in

the algorithm below, P will always refer to a collection of up to 4096 primes, one in

each processor memory.
Stage 1. In one processor, compute the next (Q, A) pair using the equations in

Remark 2. In each processor, compute REM = (Q/P) * P where truncated integer
division is meant by the / sign. In each processor for which REM = 0, store P on a

stack contained in the processor containing the current Q and A. Repeat Stage 1
using another processor for the (Q, A) pair until all processors are used.

Remark. Each processor memory now contains a value of Q, A and a set of primes
from the factor base which divide that particular value of Q. The average number of

P in each stack is about log log Q or 4.24 for a 60-digit factorization. The maximum
number for 4096 Q's should not exceed ten.

Stage 2. In all processors, beginning with I = 1, divide Q by the Ith element of

the prime stack giving QUOT and REM so that

Q = P(I) * QUOT + REM.

Where REM = 0, replace Q by REM and repeat until all REM + 0. Replace I by
I + 1 and repeat the stage for those processors whose prime stack contains an Ith

prime.
Test. Store on a file those Q's which have factored. If not enough Q's have been

interrogated, go back to Stage 1.
Note that a great deal of inefficiency is introduced in Stage 2, since for most

divisions of higher powers, most processors will have been masked out. But this

entire stage processes at most 10 primes and uses up a small amount of processor
time compared to Stage 1 which represents the bottleneck in this implementation.
Since the fundamental operation in Stage 1 is to find a remainder rather than

determine a quotient and remainder, we can save processor time by programming
the "division" in Stage 1 by using repeated additions. For example, if N is a 60-digit
number and each Q contains about 100 bits, then in the Setup portion of the

algorithm, compute in each processor memory, the numbers T(1), T(2),... , T(100)
where T(i) 2Y mod P for the prime P assigned to that processor. Now, let

B(1), B(2), . . ., B(100) represent the contents of bit 1, bit 2, .. , bit 100 of the current
value of Q in Stage 1. Then

100

REM= S T(i)modP,
i=l1

B(i)==1

and finding a remainder mod P in each processor amounts to k additions, where k is

the number of binary locations in Q containing 1; generally about 100/2. Such a

programming trick is easy to implement on an array processor which has general bit

manipulation instructions. This procedure for finding a remainder is about 32 times

faster than ordinary division.
Most of the individual parts of this implementation have been written on the DAP

but, at the time of this writing, the total program has not been written. It is expected
that a 60-digit factorization should take about 5 hours of DAP time.

IMPLEMENTING THE CONTINUED FRACTION FACTORING ALGORITHM 257

IV. The Early Abort Strategy. The Early Abort Strategy (EAS) consists of giving
up on the trial division of a particular Qn if division by the early primes in the factor
base produces relatively few prime factors of Q,. This strategy has been analyzed by
Pomerance [6] and an implementation on a sequential computer has been described
by Pomerance and Wagstaff [7]. The results of their investigations show that this
variation can effect an 8- to 10-fold acceleration of CFRAC. We will describe their
method and show how it could be incorporated in the DAP implementation.

To implement EAS with three aborts, we would choose three integers mln, m 2, and
m 3 which satisfy

0 < ml < m2 < mi3 < F

and three bounds Bi satisfying

2r& > B1 > B2> B3 > 1.

If, after dividing out of Qi all primes p in the factor base satisfying 0 < p < mi , the
cofactor CFi satisfies

CFi > Bi,

then we abandon the Qi, compute, and begin processing the next value Qi,,. There
are three tests or "cuts" where such an abort is contemplated and each test reduces
substantially the number of Q's which are interrogated. This is an idea well suited to
a sequential processor where the values of Q are investigated one at a time and it
does not seem immediately adaptable to our Stage 1, in which a single Q is divided
by all F primes at once. We will describe an EAS scheme which will perform
efficiently on a parallel processor as long as the integers ml, m2 -ml, andi3 - m2

are divisors of the number of processors. For a 60-digit factorization on the DAP
which has 4096 processors, will select the cut points

ml = 16, m2= 80, m3 = 592.

We can use the table in [7, p. 108] to determine the best values for the B's and for
this implementation we would use

B1 = 4 x 1027, B2= 7 x 1024, B3 = 1021.

Stage 1 would now be expanded into three nested stages in the following way.
Pass 1. Attempt to Factor the Q's With 16 Primes.
Stage 1.1. We partition the 4096 processors into 256 partitions consisting of 16

processors each. We regard these as separate parallel processors each consisting of
16 processors and Stage 1 is implemented with multiplicity 256 in that 256 values of
Q are computed, one in each partition, and the first 16 primes in the factor base are
placed in each partition. With one parallel instruction, the value REM = (Q/P) * P
is computed in each processor of each partition. Within each partition, the primes
corresponding to REM = 0 are placed in a stack in the processor containing the
particular Q belonging to the partition. The processor location of this value of Q is
incremented by one with each execution of this stage until, after 16 executions, 4096
values of Q have been tested, and each is associated with its stack of primes dividing
Q.

Stage 1.2. This executes exactly as Stage 2 of the previously described method.
The elements of the stack are used as trial divisors in order to divide out all possible

258 MARVIN C. WUNDERLICH

powers of the primes which divide the Q. Then we save those values of Q for which
Q < B1 which will be used as input into the next pass. If there is sufficient memory,

the values of Q which pass the test could be "parked" in a higher portion of memory
to be recalled when a sufficient number of "good" Q's have been collected to
execute a stage of the next pass.

Pass 2. Divide by the Next 64 Primes.
Stage 2.1. We now partition the 4096 processors into 64 partitions of 64 processors

each and proceed exactly as in Stage 1.1. This is a natural mode of operation for the
DAP since high-level software exists for the machine when it is regarded as a 64
processor parallel computer operating with a word length of 64 bits. At the
conclusion of 64 executions of this stage, 4096 Q's are determined with their stack of
primes carried in from Pass 1 with an additional stack of primes which were added
in Stage 2.1.

Stage 2.2. The new primes are divided out of the Q's in parallel and the resulting
Q's which satisfy Q < B2 are again saved on a file or "parked" in an even higher
portion of memory.

Pass 3. Divide by the Next 512 Primes. Here the 4096 processors are partitioned
into 8 partitions consisting of 512 processors each, and the 4096 good-good Q's
which have survived Passes 1 and 2 and are parked in memory or stored on a file
and are retrieved eight at a time and processed exactly like Pass 2. The survivors of
this pass, those for which Q < B3, are parked or stored to be used as input for the
final pass.

Pass 4. The Final Set of Primes. We now finish off those values of Q which have
survived all the earlier cuts with one instruction in parallel which divides the Q's one
at a time by up to 4096 primes, one in each processor. The algorithm concludes
exactly like the original algorithm without EAS. The primes are parked one by one
into a region of high core along with the stack of primes which divide them. Stage
4.2 divides all the prime factors and those Q which factor completely are saved for
the Gaussian elimination step. If the Large Prime variation is employed, the Q's
whose cofactor is less than the square of PF are saved on some external storage
device until enough are accumulated so that the scan program will generate a row of
zeros in the Gaussian elimination step.

Pomerance and Wagstaff claim that EAS with three aborts should increase the
running speed of the program by a factor of 10 and this would produce an algorithm
which would factor a 60-digit number in about a half hour. However, for three of the
four "Stage 1" executions, it will not be possible to obtain full advantage of the
remaindering operation described in Section III in which the sum (9) is taken over
all i whose i th bit of Q contains 1. Since the computer contains many Q's, the sum
will have to be computed for each i and utilized in those processors whose Q has its
ith bit 1. This will probably reduce our gain from using this table remaindering from
3 to 2, giving us a 60-digit average running time of about an hour. This section
concludes with a set of remarks pertaining to a suggested DAP implementation of
this algorithm.

1. The majority of this algorithm can be written in the higher-level language DAP
FORTRAN. For an elementary discussion of DAP FORTRAN and an example of
its application to a problem in number theory, see [8]. The most difficult part of the

IMPLEMENTING THE CONTINUED FRACTION FACTORING ALGORITHM 259

algorithm will be the collection in a stack of the primes which divided the Q in its
particular processor partition. (See Stage 1.1.) This essentially consists of identifying
all elements of a portion of a bit plane containing a one and recording the cardinal
number of its processor. This would involve programming at the microcode level.
Routines do exist when the partition size is 64 as in Pass 2 or 4096 as in Pass 4.

2. The optimum size of the factor base will really depend on hardware constraints
rather than theoretical considerations. Even though the choices for ml given would
permit a factor base size of 4688 if 4096 primes were used in the last pass, a total
factor base size of 4096 is really preferable on the DAP. This is because a bit matrix
of 4096 X 4096 will conveniently fit in the memory of the DAP and the elimination
can be carried out in core without any disk swapping. Parkinson and Wunderlich [5]
have shown how this can be done without the need for allocating additional memory
for a history matrix. If one really has an unbounded number of processors, then one
could compute the optimum number of processors and hence the number of primes
in the factor base by minimizing the value of NQ = F/r given in (5). One then has
to take into consideration the time taken to perform the elimination step and this
makes the result hardware dependent. A preliminary computation shows the opti-
mum number of processors to be around 50,000 and there is little hope that a
computer will be built soon which has sufficient memory per processor to implement
this kind of program.

3. For a 60-digit factorization, there seems to be enough memory in the DAP
located at Queen Mary College, London, to implement the entire four pass algo-
rithm without ever resorting to any external store. Pass 1 would be repeated until
4096 Q's are generated which survive Test 1. Then one iteration of Pass 2 would
park a small number of Q which survived two tests. This would continue until 4096
of these Q's are parked, which would trigger one execution of Pass 3. Pass 3 is
repeated until 4096 Q's are generated having survived all three tests, and then the
final factorization identifies the small fraction of Q's which factor completely over
the factor base or factor with a large prime. Only in the latter case will external store
be needed to store the large prime factorizations. If the large prime variation is not
used, the entire algorithm could be processed in one contiguous run.

4. The computation of the (Q, A) pairs is basically a serial operation although
methods are known for generating the values of Q in parallel. Since the host
computer for the DAP is an ICL 2980, and the DAP is always called from an
executing 2980 program as a subroutine, the (Q, A) pairs could be generated in a
2980 program and stored in memory which is shared between the DAP and the
2980. The parallel factoring program in the DAP could be called as a subroutine
from the 2980 whenever a new buffer of (Q, A) pairs have been generated. The 2980
operates in a time sharing mode whereas only one DAP program is executed at a
time. The program would blend well with the usual mix of user programs in the
system and it would not be necessary to dedicate the entire system to such a
program.

5. There seems to be less advantage to using the Stage 1/Stage 2 variation when
the number of primes is small as in Pass 1 than when the number of primes is large.
Therefore, it may be sensible to use EAS without the two stage variation in Pass 1.
Then we would merely put 4096 values of Q in the memory, one in each processor,

260 MARVIN C. WUNDERLICH

and proceed to divide all the Q 's with one p at a time until all p's are divided out of
all Q 's. After doing this for 16p 's, we test Q < B, and proceed with Pass 2 using the

two stage variation. We lose the factor of 2 because we cannot use the fast simple
division method, but we may gain that back in a more efficient implementation of
EAS. Only experience will tell.

Conclusion. At the time of this writing, there are some factorization programs
being tested which achieve the performance suggested in this article. The most recent
was done at Sandia Laboratories by J. A. Davis and D. B. Holdridge, where the
quadratic sieve algorithm was programmed on a CRAY I. Davis and Holdridge have
recently announced a successful factorization of a 63-digit number in a total of 5.4
hours of machine time. The author is designing an implementation of CFRAC on
the MPP parallel processor which has four times as many processors and runs about
twice as fast as the DAP, and such a program could conceivably factor a 60-digit
number in a running time measured in minutes rather than hours.

The author would like to thank Professor Dennis Parkinson of Queen Mary
College, London, who contributed many important ideas for the DAP implementa-
tion and the referee for several helpful suggestions in the preparation of the paper.

Department of Mathematical Sciences
Northern Illinois University
DeKalb, Illinois 60115

1. J. L. GERVER, "Factoring large numbers with a quadratic sieve," Math. Comp., v. 41, 1983, pp.
287-294.

2. D. E. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, Mass., 1981.

3. D. E. KNUTH & L. TRABB PARDO, "Analysis of a simple factorization algorithm," Theoret. Comput.
Sci., v. 3, 1976, pp. 321-348.

4. M. A. MORRISON & J. BRILLHART, "A method of factoring and the factorization of F7," Math.
Comp., v. 29, 1975, pp. 183-205.

5. D. PARKINSON & M. C. WUNDERLICH, "A compact algorithm for Gaussian elimination over GF(2)
implemented on highly parallel computers," Parallel Computing, v. 1, 1984.

6. C. POMERANCE, "Analysis and comparison of some integer factoring algorithms," Computational
Methods in Number Theory, MC tract 154 (H. W. Lenstra and R. Tijdeman, eds.), pp. 89-139.

7. C. POMERANCE & S. S. WAGSTAFF, JR., "Implementation of the continued fraction factoring
algorithm," Congr. Numer., v. 37, 1983, pp. 99-118.

8. M. C. WUNDERLICH, "DAP FORTRAN. A versatile language for parallel computing," Congr.
Numer., v. 38, 1983, pp. 261-270.

9. M. C. WUNDERLICH, "Factoring numbers on the massively parallel computer," Advances in
Cryptology (David Chaum, ed.), 1984, pp. 87-102.

	Cit r228_c230:

